Two New Abietane Diterpenoids from the Stems of *Clerodendrum* kaichianum P. S. Hsu

by Mingfeng Xu, Lianqing Shen*, Kuiwu Wang, and Qizhen Du

College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, P. R. China (phone: +86-571-88071024-7575; fax: +86-571-88071024-7575; e-mail: zjgsu423@yahoo.cn)

Two new abietane diterpenoids, named 17-hydroxyteuvincenone G (1) and 17-hydroxyteuvincen-5(6)-enone G (2), together with four known diterpenoids, were isolated from the stems of *Clerodendrum kaichianum* P. S. Hsu. Their structures were elucidated by extensive NMR and MS analyses, and by comparison with literature data. The new compounds showed significant cytotoxicities against the HL-60 and A-549 tumor cell lines.

Introduction. – The genus *Clerodendrum* contains more than 30 species distributed in China, some of which have been used in Traditional Chinese Medicine, such as *Clerodendrum indicum* for treating malaria and rheumatism [1]. Plants of the genus *Clerodendrum* have proved to be a rich source of abietane diterpenoids, as well as iridoids, triterpenes, phenylethanoid glycosides, and saponins, which have been found to possess many beneficial pharmacological effects, such as antimalarial, antitumor, and anti-HIV activities [2-8]. In China, the leaves of *Clerodendrum kaichianum* P. S. Hsu are used as a traditional medicine against hypertension. Search for the new bioactive natural products from this plant has led to the isolation of two new abietane diterpenoids, **1** and **2**, together with four known abietane diterpenoids, teuvincenone A (**3**), 11,14-dihydroxyabieta-8,11,13-trien-7-one (**4**), dehydroabietan-7-one (**5**), and sugiol (**6**), and these two new compounds were found to show cytotoxicity against HL-60 and A-549 cells. Here, we describe the isolation, structure elucidation, and cytotoxic activity of the new compounds.

Results and Discussion. – The 75% aqueous EtOH extract of the air-dried stems of *C. kaichianum* was suspended in H₂O, and then partitioned with petroleum ether (PE), AcOEt, and BuOH successively. The AcOEt-soluble fraction was further chromatographed on silica gel and *Sephadex LH-20*, and preparative HPLC afforded diterpenoids 1-6.

17-Hydroxyteuvincenone G (1) was obtained as yellowish needles and assigned the molecular formula $C_{20}H_{24}O_6$ on the basis of HR-ESI-MS (m/z 359.1499 ($[M-H]^-$, $C_{20}H_{23}O_6^-$; calc. 359.1493), which indicated nine degrees of unsaturation. The IR spectrum showed the absorption bands for OH (3420 cm⁻¹), ketones (1714, 1678 cm⁻¹), and benzene moieties (3034, 1612, 1580, 1508 cm⁻¹). The absorption bands in the UV spectrum (235, 295, and 380 nm) also indicated the presence of a benzene ring and a ketone.

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

The ¹H-NMR spectrum (*Table 1*) of **1** showed signals corresponding to three Me groups (δ (H) 1.17, 1.16, and 1.42 (*s*, 3 H each)) at quaternary C-atoms, which were almost identical to those of teuvincenone G assigned by *Cuadrado et al.* [9] to the Me(18), Me(19) and Me(20) groups (δ (H) 1.18, 1.17 and 1.44, resp.). Signal corresponding to three OH groups (*singlets* at δ (H) 13.15, 6.30, and 5.39), the strongly deshielded resonance of an OH H-atom (δ (H) 13.15), together with its slow exchange with D₂O, confirmed the existence of a phenolic OH group at C(14), which forms a strong intramolecular H-bond with the C(7)=O function.

In total, 20 C-atom signals were observed in the ¹³C-NMR and DEPT 135 spectra of **1** (*Table 1*), including two C=O signals at δ (C) 216.0 and 203.1, and six aromatic C-atom signals at δ (C) 155.5, 155.3, 137.3, 131.4, 111.1, and 110.2. The high-field region displayed three Me signals at δ (C) 17.5, 20.9, and 27.0, five CH₂ signals at δ (C) 28.7, 34.4, 35.3, 35.7, and 64.7, two CH signals at δ (C) 49.1 and 86.6, and two signals at (δ (C) 39.3 and 46.9) for quaternary C-atoms (*Table 1*). These data revealed that compound **1** was a diterpenoid. The NMR spectra of **1**, being very similar to those of teuvincenone G [8], which showed the presence of a dihydro-2-(hydroxymethyl)furan fused with the aromatic ring (δ (H) 3.35 (*dd*, *J*=15.0, 9.0, H_a-C(15)), 3.31 (*dd*, *J*=15.3, 7.0, H_β-C(15)); 5.13-5.17 (*m*, H-C(16)); 3.90 and 3.80 (2*dd*, H_a-C(17) and H_β-C(17)); δ (C) 28.7 (*t*, C(15)); 86.6 (*d*, C(16)); 64.7 (*t*, C(17))) instead of the dihydro-2-methylfuran moiety in teuvincenone G (δ (H) 3.38 and 2.85 (2*dd*, *J*_{gem}=15.3, H_a-C(15)) and H_β-C(15)); 5.14 (*m*, H-C(16)); 1.52 (*d*, Me(17)); δ (C) 34.3 (*t*, C(15)); 83.5 (*d*, C(16)); 22.0 (*q*, C(17))).

Based on the analyses of the ¹H,¹H-COSY and HSQC data, a *ABX* system (δ (H) 2.41 (*dd*); 2.60–2.63 (*m*); 2.60–2.63 (*m*)) due to the position 5 and 6 of ring *B* was deduced, indicating the presence of the following fragments: CH₂(1)–CH₂(2),

	$\delta(C)$	$\delta(\mathrm{H})$	HMBC $(H \rightarrow C)$
$H_a - C(1)$	35.7 (<i>t</i>)	1.99 (ddd, J = 13.7, 9.7, 9.7)	C(2), C(3), C(5), C(20)
$H_{\beta}-C(1)$		3.28 (dd, J = 13.7, 7.0)	
$H_a - C(2)$	34.4(t)	2.73 (dd, J = 14.5, 7.9)	C(1), C(3), C(4)
$H_{\beta}-C(2)$		2.60 - 2.63 (m)	
C(3)	216.0(s)		
C(4)	46.9 (s)		
H-C(5)	49.1 (<i>d</i>)	$2.41 \ (dd, J = 11.2, 7.5)$	C(1), C(4), C(6), C(7), C(10)
$H_{a}-C(6)$	35.3 (t)	2.60 - 2.63 (m)	C(5), C(7), C(10)
$H_{\beta}-C(6)$		2.60 - 2.63 (m)	
C(7)	203.1(s)		
C(8)	110.2(s)		
C(9)	137.3 (s)		
C(10)	39.3 (s)		
C(11)	131.4(s)		
C(12)	155.3 (s)		
C(13)	111.1(s)		
C(14)	155.5(s)		
$H_{\alpha} - C(15)$	28.7 (t)	3.35 (dd, J = 15.3, 9.0)	C(12), C(13), C(14), C(16)
$H_{\beta}-C(15)$		3.31 (dd, J = 15.3, 7.0)	
H–C(16)	86.6(d)	5.13 - 5.17 (m)	C(13), C(15), C(17)
$H_a - C(17)$	64.7 (<i>t</i>)	3.90 (dd, J = 15.0, 8.7)	C(15), C(16)
$H_{\beta}-C(17)$		3.80 (dd, J = 15.0, 7.2)	
Me(18)	27.0(q)	1.17(s)	C(3), C(4), C(5), C(19)
Me(19)	20.9(q)	1.16(s)	C(3), C(5), C(18)
Me(20)	17.5(q)	1.42 (s)	C(1), C(5), C(9), C(10)
11-OH		5.39 (br. s)	
14-OH		13.15 (br. s)	

Table 1. ¹³C- (125 MHz) and ¹H-NMR (500 MHz) Data^a) of Compound **1**. Recorded in CDCl₃, δ in ppm, J in Hz.

^a) Assignments were accomplished by a combination of 1D- and 2D- (¹H,¹H-COSY, HSQC, and HMBC) NMR experiments.

CH(5)–CH₂(6), and CH₂(15)–CH(16)–CH₂(17) should exist. In the HMBC spectrum, the ¹H,¹³C long-range correlations H–C(1)/C(2), C(3), C(5), C(10), and C(20); H–C(5)/C(1), C(3), C(4), C(6), C(7), and C(10); H–C(17)/C(15), and C(16); and H–C(15)/C(13), C(14), C(15), C(16), and C(17) (*Table 1*) suggested the abietane diterpenoid framework in the molecule. Furthermore, the ¹H,¹³C long-range correlations H–C(18)/C(3), C(4), C(5), and C(19); H–C(19)/C(3), C(4), C(5), and C(18); and H–C(20)/C(1), C(5), C(9), and C(10) indicated that C(18) and C(19) were at C(4), and C(20) was at C(10). Therefore, compound **1** possesses an abietane-type diterpenoid framework with a CH₂OH group at C(16); the absolute configuration at C(16) was not ascertained. However, on biogenetic basis, it is reasonable to assume that it possess the same absolute configuration as the known abietane diterpenoid **3**, which was isolated from the same plant. Thus, the structure of **1** was suggested to be (16*R*)-12,16-epoxy-11,14,17-trihydroxy-17(15 \rightarrow 16)-*abeo*-abieta-8,11,13-triene-2,7-dione. 17-Hydroxyteuvincenone G (2) was obtained as yellowish needles and assigned the molecular formula $C_{20}H_{22}O_6$ on the basis of HR-ESI-MS (m/z 357.1330 ($[M - H]^-$, $C_{20}H_{21}O_6^-$; calc. 357.1336), which indicated ten degrees of unsaturation. The IR spectrum showed the absorption bands for OH (3402 cm⁻¹) and ketone (1719 and 1672 cm⁻¹) groups, and benzene moieties (1612, 1582, and 1510 cm⁻¹). The absorption bands in the UV spectrum (265, 296, 336, and 382 nm) also indicated the presence of a benzene ring.

The ¹³C-NMR and DEPT-NMR spectra indicated that **2** contained three Me, four CH₂, two CH groups, and eleven quaternary C-atoms. The NMR spectra of **2** were very similar to those of compound **1** except that the signals at δ (C) 49.1 and 35.3 were missing, which were replaced by two signals at δ (C) 174.1 and 122.4, indicating an additional C(5)=C(6) bond (*Table 2*). Thus, the structure of **2** was suggested to be (16*R*)-12,16-epoxy-11,14,17-trihydroxy-17(15 \rightarrow 16)-*abeo*-abieta-5,8,11,13-tetraene-2,7-dione.

	$\delta(C)$	$\delta(\mathrm{H})$	HMBC $(H \rightarrow C)$
$H_a - C(1)$	26.6 (<i>t</i>)	1.96 - 2.01 (m)	C(2), C(3), C(5), C(20)
$H_{\beta}-C(1)$		3.26 (dd, J = 14.5, 7.0)	
$H_a - C(2)$	33.2(t)	2.70 - 2.73 (m)	C(1), C(3), C(4)
$H_{\beta}-C(2)$		2.70 - 2.73 (m)	
C(3)	213.2(s)		
C(4)	49.5 (s)		
C(5)	174.2(s)		
H-C(6)	122.4(d)	6.30(s)	C(4), C(5), C(8), C(10)
C(7)	189.5(s)		
C(8)	108.9(s)		
C(9)	135.2(s)		
C(10)	41.6(s)		
C(11)	131.1(s)		
C(12)	154.0(s)		
C(13)	111.7(s)		
C(14)	154.1(s)		
$H_a - C(15)$	28.8(t)	3.31 (dd, J = 15.3, 9.0)	C(12), C(13), C(14), C(16)
$H_{\beta}-C(15)$		3.01 (dd, J = 15.3, 7.0)	
H–C(16)	86.4(d)	5.12 - 5.16 (m)	C(15), C(17)
$H_a - C(17)$	64.8(t)	3.89 (dd, J = 15.0, 8.7)	C(15), C(16)
$H_{\beta}-C(17)$		3.80 (dd, J = 15.0, 7.2)	
Me(18)	29.6(q)	1.40 (s)	C(3), C(4), C(5), C(19)
Me(19)	20.1(q)	1.44(s)	C(3), C(4), C(5), C(18)
Me(20)	26.6(q)	1.46(s)	C(1), C(5), C(9), C(10)
11-OH		5.41 (br. s)	
14-OH		13.34 (br. s)	

Table 2. ¹³C- (125 MHz) and ¹H-NMR (500 MHz) Data^a) of Compound 2. Recorded in CDCl₃, δ in ppm, J in Hz.

^a) Assignments were accomplished by a combination of 1D- and 2D- (¹H,¹H-COSY, HSQC, and HMBC) NMR experiments.

542

Biological Studies. Compounds **1** and **2** were evaluated for their cytotoxic activities against the HL-60 and A-549 cell lines *in vitro* by means of the MTT (= 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2*H*-tetrazolium bromide) assay [10]. Both compounds were found to be significantly active to inhibit the proliferation of HL-60 and A-549 cell lines with IC_{50} values less than 15 µM, as compared to cisplatin used as positive control (*Table 3*).

Table 3. Cytotoxicities (IC_{50} [µM]) of Compounds 1 and 2 Isolated from Clerodendrum kaichianum P. S. HSU

Compound	HL-60	A-549
1	5.95 ± 0.57	9.37 ± 0.24
2	15.91 ± 0.95	10.35 ± 0.51
Cisplatin	4.87 ± 0.89	8.63 ± 1.19

This research was supported by the Department of Science and Technology of Zhejiang Province (2006C12044) and a grant from the *Zhejiang Provincial Natural Science Foundation of China* (Y4090121).

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂, 200–300 mesh; Qingdao Marine Chemical Factory, Qingdao, China) and Sephadex LH-20 (Amersham Pharmacia Biotech, UK). Prep. HPLC: JAI-9103 (Japan Analytical Industry). TLC: Merck silica-gel plates; visualization under UV light and by spraying with 10% aq. H₂SO₄, followed by heating. M.p.: X-4 apparatus; uncorrected. Optical rotations: Perkin-Elmer 241 automatic polarimeter. UV Spectra: Shimadzu UV-2550 spectrophotometer, in MeOH; λ_{max} (log ε) in nm. IR Spectra: Nicolet 380 FT-IR spectrophotometer (Thermo Nicolet); KBr pellets; in cm⁻¹. ¹H- and ¹³C-NMR: Bruker AVANCE III 500 spectrometer, at 500 (¹H), and 125 (¹³C) MHz; in CDCl₃; δ in ppm, J in Hz. HR-ESI-MS: Agilent 6210 TOF-MS mass spectrometer.

Plant Material. The stems of *C. kaichianum* were collected on the mountains of Lin'an County, Zhejiang Province, P. R. China, in September of 2009, and identified by Dr. *Bin Wu* (College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China). A voucher specimen (No. 20090913) was deposited with the laboratory of Zhejiang Gongshang University, Hangzhou, P. R. China.

Extraction and Isolation. The air-dried powder of the stems (11.6 kg) of *C. kaichianum* was extracted with 75% aq. EtOH three times at 75° for 4 h each. The EtOH extracts were combined and evaporated to dryness to afford a gummy residue (325 g), which was suspended in H₂O (2 l) and extracted at r.t. with petroleum ether (PE; 3×21 , 65 g), AcOEt (3×21 , 102 g), and BuOH (3×21 , 88 g), successively.

Part of AcOEt extract (90 g) was subjected to CC (SiO₂; AcOEt/PE gradient) to afford ten fractions, *Frs.* 1-10, on the basis of TLC analysis. *Fr.* 2 (8 g) was further subjected CC (SiO₂; AcOEt/PE 5–15%) and separated into five fraction pools, *Frs.* 2A, 2B, 2C, 2D, 2E. *Fr.* 2D was further purified on *Sephadex LH-20* and later prep. HPLC (H₂O/MeOH 60:40) to afford compounds **3** (12 mg), **4** (40 mg), **5** (17 mg), and **6** (9 mg).

The major fraction, *Fr.* 4 (9 g), was further subjected CC (SiO₂; PE/acetone from 5 :1 to 1:1) to give six fraction pools, *Frs.* 4A, 4B, 4C, 4D, 4E, 4F. Fr. 4E was subjected to *Sephadex LH-20*, and later prep. HPLC to give compounds **1** (8 mg) and **2** (11 mg).

17-Hydroxyteuvincenone G (=(16R)-12,16-Epoxy-11,14,17-trihydroxy-17(15 → 16)-abeo-abieta-8,11,13-triene-2,7-dione; **1**). Yellowish needles. M.p. 250–252°. $[\alpha]_{25}^{D}$ = +150.1 (c = 0.02, MeOH); UV(MeOH): 207, 225, 280, 360. IR: 3400, 2992, 1717, 1650, 1615, 1699, 1581. ¹H- and ¹³C-NMR (CDCl₃): see *Table 1*. HR-ESI-MS: 359.1487 ($[M - H]^-$, C₂₀H₂₃O₆⁻; calc. 359.1494).

17-Hydroxyteuvincen-5(6)-enone G (=(16R)-12,16-Epoxy-11,14,17-trihydroxy-17(15 \rightarrow 16)-abeoabieta-5,8,11,13-tetraene-2,7-dione; **2**). Yellowish needles. M.p. 305-307°. $[a]_{D}^{25} = +47.2$ (c = 0.07,

HELVETICA CHIMICA ACTA - Vol. 94 (2011)

MeOH). UV(MeOH): 203, 260, 299, 365. IR: 3396, 2980, 1716, 1650, 1622, 1693, 1679. ¹H- and ¹³C-NMR (CDCl₃): see *Table 2*. HR-ESI-MS: 357.1330 ($[M - H]^-$, $C_{20}H_{21}O_6^-$; calc. 357.1336).

The percentage of growth inhibition was determined using a MTT assay to measure viable cells with minor modification. A total of 5000-10000 exponential phase cells per well was seeded onto a 96-well plate for 24 h, treated with compounds **1** and **2** at 2.5, 5, 10, 20, 40 µM concentrations for 72 h using cisplatin as a positive control. Briefly, MTT (= 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2*H*-tetrazolium bromide; 100 µl) working soln. (1 mg/ml) was added into each well of 96-well plate and incubated at 37° for 4 h, and then the medium was removed. The converted dye formazan was solubilized with 150 µl acidic i-PrOH, and each concentration was tested in triplicate. The absorbance was then measured at a wavelength of 570 nm using a microplate reader. The dose resulting in 50% inhibition of cell growth, IC_{50} , was calculated by NDST software.

REFERENCES

- [1] S.-S. Liu, T.-Z. Zhou, S.-W. Zhang, L.-J. Xuan, Helv. Chim. Acta 2009, 92, 1070.
- [2] T. Kanchanapoom, R. Kasai, P. Chumsri, Y. Hiraga, K. Yamasaki, Phytochemistry 2001, 58, 333.
- [3] A. C. Dorsaz, A. Marston, H. S. Evans, J. D. Moonthi, K. Hostettmann, Helv. Chim. Acta 1985, 68, 1605.
- [4] R. Pandey, R. K. Verma, S. C. Singh, M. M. Gupta, Phytochemistry 2003, 63, 415.
- [5] G. F. Spencer, J. L. Flippen-Anderson, Phytochemistry 1981, 20, 2757.
- [6] K.-H. Kim, S.-G. Kim, M.-Y. Jung, I.-H. Ham, W.-K. Whang, Arch. Pharm. Res. 2009, 32, 7.
- [7] H.-H. Nan, J. Wu, S. Zhang, Pharmazie 2005, 60, 798.
- [8] D. Pal, S. Sannigrahi, U. K. Mazumder, Indian J. Exp. Biol. 2009, 47, 743.
- [9] M. J. S. Cuadrado, M. Bruno, M. C. Torre, F. Piozzi, G. Savone, B. Rodriguez, *Phytochemistry* 1992, 31, 1697.
- [10] J.-J. Zhou, X.-F. Yue, J.-X. Han, W.-Y. Yang, Chin. J. Pharm. 1993, 24, 455.

Received August 18, 2010